Econometrics

Box-Pierce Test of autocorrelation in Panel Data using Stata.

The test of Box & Pierce was derived from the article “Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models” in the Journal of the American Statistical Association (Box & Pierce, 1970). The approach is used to test first-order serial correlation, the general form of the test is given the statistic as: Where […]

Box-Pierce Test of autocorrelation in Panel Data using Stata. Read More »

Ramsey RESET Test on Panel Data using Stata

In regression analysis, we often check the assumptions of the econometrical model regressed, during this, one of the key assumptions is that the model has no omitted variables (and it’s correctly specified). In 1969, Ramsey (1969) developed an omitted variable test, which basically uses the powers of the predicted values of the dependent variable to

Ramsey RESET Test on Panel Data using Stata Read More »

The budget constraints in the microeconomic approach

Following the last post which gave an example to model the Cobb-Douglas utility function regarding microeconometrics, we need to provide an important aspect related to the behavior of the consumer. That is the budget constraint (referred to as a monetary linear constraint) which limits the number of goods that the consumer can buy and use

The budget constraints in the microeconomic approach Read More »

A brief example to model the Cobb-Douglas utility function using Stata.

Regarding microeconometrics, we can find applications that go from latent variables to model market decisions (like logit and probit models) and techniques to estimate the basic approaches for consumers and producers. In this article, I want to start with an introduction of a basic concept in microeconomics, which is the Cobb-Douglas utility function and its

A brief example to model the Cobb-Douglas utility function using Stata. Read More »

Robust Modeling of Policy Changes: Difference in Difference (DiD)

The difference in Difference (DiD) is a popular method in empirical economics and has important applications in other social sciences as well. DID is a quasi-experimental design that uses panel data to estimate the effects of specific intervention or treatment (such as policy changes, new laws, social program implementation) on outcomes over time and between

Robust Modeling of Policy Changes: Difference in Difference (DiD) Read More »